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Abstract

The implementation of computer-based finite strain methodologies not only speeds up the estimation procedures, but usually also increases

their accuracy. In this paper an interactive procedure is presented, where the user is able to rapidly fit standard deformed logarithmic spirals to

natural examples.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Similar geometrical forms can be obtained by different

deformation mechanisms. So the shape of geological

structures, such as folds, is often insufficient when trying

to understand the structural processes (e.g. Ramsay, 1967, p.

343; Price and Cosgrove, 1990, pp. 249–250; Hudleston and

Lan, 1993). Finite strain analysis is a powerful tool in

helping to constrain the possible solutions (e.g. Twiss and

Moores, 1992, p. 314). Mainly after the classical paper of

Cloos (1947), a diversity of methodologies has been

proposed in order to estimate finite strain in tectonites.

Using mostly the distortion of objects (e.g. ooids and fossils)

or point distributions (e.g. quartz grain centers in quartzites)

all methods try to estimate the shape and orientation of the

strain ellipse/ellipsoid. Although in the early work, finite

strain techniques were limited by the calculations involved,

the introduction of computer techniques soon led to

improvements of the most common strain methodologies.

The Rf/f method (Ramsay, 1967, pp. 202–211; Dunnet,

1969) was greatly enhanced by adding the possibility of

applying statistical tests in the comparison of deformed

fabric data with computed theoretical standard curves

(Lisle, 1985). The Fry method (Fry, 1979) was updated to
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provide a better discrimination of the strain ellipse when

studying fabrics in poorly sorted rocks (Erslev, 1988).

However, for some of the less used methodologies, only

the classical approach continues to be available. Strain

estimation using deformed spiral form (e.g. ammonoids) is

such a case. Indeed, although existing methodologies were

developed under the assumption that these shells have

grown according to a logarithmic spiral law (Mosely, 1838;

Thompson, 1942) the mathematical difficulties of working

with the entire spiral led to methods using only discrete data

points (Blake, 1878; Tan, 1973).

In this paper we present a computer-based methodology

in which the finite strain of distorted spiral forms is

estimated using the global shape of a set of discrete

measurements.
2. Strain analysis using ammonoids

Although the possibility of using ammonoids as strain

markers was first envisaged more than one hundred years

ago (Blake, 1878), applications have been very limited.

Indeed, the inability to deal with three dimensions, the

stratigraphical limitations and the predominance of forms

with the plane of symmetry parallel to the bedding plane,

strongly limits the use of ammonoids in strain studies.

Nevertheless, ammonoids can be useful in order to study

strain heterogeneities at a regional scale (Subieta, 1977) or
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Fig. 1. Logarithmic spiral geometrical parameters.
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for constraining the amount of diagenetic compaction

(Rocha and Dias, 2003).
2.1. Geometrical assumptions

The recognition that the development of ammonoid

shells should obey a logarithmic rule (Mosely, 1838;

Thompson, 1942) opened the way for the establishment of

several methods to estimate the strain from deformed

specimens. So, the subsequent methodologies have all been

based on the same mathematical expression for the

undeformed logarithmic spiral:

r Z keqcota (1)

where rZradius of the spiral at angle q, kZscale parameter,

and aZangle between the tangent to the spiral and the line
Fig. 2. Parameters used in Blake’s method.
connecting the tangent point to the spiral center (coiling

angle of mollusc).

This formula (Fig. 1) shows that only one parameter, the

spiral angle (a), controls the diversity of shape in ammonoid

shells. Tan (1973) stated that this angle always ranges

between 80 and 848 for the Jurassic ammonoids he studied.

2.2. Previous methods

In order to estimate the strain from a deformed

ammonoid, the theoretical deformed logarithmic spiral

that best fits the shape of the fossil shell should be found.

Due to the complexity of the calculations involved in the

fitting of two spirals, the theoretical one and the natural one,

previous methods (Blake, 1878; Tan, 1973) chose a different

approach. Instead of working with the complete shape of the

deformed fossil, measurements were taken at discrete places

along the curved fossil shell. From these data, not only the

axial strain ratio of the deformed logarithmic spiral, but also

the characteristic spiral angle could be found. Nevertheless,

both classical methods, either using linear measurements

(Fig. 2; Blake, 1878) or angular ones (Fig. 3; Tan, 1973),

never compared the total shape of the deformed fossil with

the theoretical curves. This limits the possibility for the user

to get a visual idea of the misfit between the estimated spiral

and the deformed ammonoid. Tan’s methodology partially

overcomes this limitation, because fossil data are plotted on

graphs on which are also plotted theoretical curves for

selected spiral angles (a) and different strain ratios (R; Fig.

4A). The curve that best fits the data is chosen to provide the

best estimation of strain. In real situations (Fig. 4B) the fossil

data always have some scattering in relation to the

theoretical curves. This could happen either because the

ammonoid shells did not grow obeying a logarithmic rule, or

because of errors in estimating the geometrical parameters,

mainly because it is usually difficult to find the correct

position of the shell center. Some mathematical best-fit

technique (e.g. using polynomials) could then be used in

order to find the best curve. Although this process gives

some idea of the deviation between the shell and the

logarithmic curve, it continues to lack a way for the user to

visualize the error in the spiral adjustment. This is a major

concern because field geologists often have reason to

question the application of pure mathematical procedures

(De Paor, 1990).

Also, for estimating the orientation of the finite strain

ellipse, the two classical methodologies take opposite

approaches. While Tan’s procedure uses geometrical

measures that are independent of any assumption about the

strain ellipse orientation, Blake’s older procedure involves

choosing by visual inspection of the deformed shell the

orientation of the principal strain axis. This is not a simple task:
–
 Firstly, because the major strain axis does not contain the

points of maximum and minimum curvature of the

deformed spiral (Fig. 5).



Fig. 3. (A) Tan’s parameters in (A) undeformed logarithmic spiral; (B) deformed logarithmic spiral.
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–
 Secondly, due to the difficulty in accurately identifying the

points of maximum and minimum curvature in the

deformed shell. Although these points do not coincide

with themajor strain axis of the logarithmic spiral, they still

constitute the best visual approximation to it.

The inaccuracy involved in identifying the major strain

axis orientation induces errors in the estimation of the strain

axial ratios (Fig. 6). For low to moderate strains, errors hardly

exceed 5%. However, for longer deformations they could

easily attain 10%.

Finally, Blake’s (1878) and Tan’s (1973) approaches are

also not user-friendly because they are time-consuming,

especially the latter.
Fig. 5. Misfit between the major strain axis and the line joining points at

maximum curvature in a deformed logarithmical spiral with a coiling angle

(a) of 828 and an axial strain ratio (R) of 1.3.
2.3. A global approach

Traditional approaches of strain analysis do not allow the

comparison of deformed ammonoids with particular
Fig. 4. (A) Standard curves of Tan’s method for different strain ratios (R) and a fixed coiling angle (a) of 828. (B) Real example of fitting discrete data points

representing a deformed Jurassic ammonoid (Asthenoceras sp.) to a standard curve using Tan’s method (Rocha and Dias, 2003).



Fig. 6. Errors induced using Blake’s method due to the inaccuracy in

identifying the major strain axis, for low strain (RZ1.3) and high strain

(RZ2.6).

Fig. 8. Display of the interactive computer base technique used in the strain

estimation of a deformed ammonoid (Asthenoceras sp.).
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deformed logarithmic spirals. The parameters of the spiral

(Eq. (1)) are complex enough to make such a manual

procedure impractical. An alternative approach is to automate

the construction of deformed logarithmic spirals. This is the

chosen approach.

The computation of the coordinates of points belonging to

a deformed logarithmic spiral (Fig. 7A) is a straightforward

procedure (Ramsay and Huber, 1983, p. 140):

x0 Z ikeqcotaR0:5cosq (2)

y0 Z keqcotaRK0:5sinq (3)

where x0 and y0ZCartesian coordinates of points in the spiral,
Fig. 7. (A) Parameters used for the deformation of a logarithmic spiral. (B)

Parameters used for the rotation of a logarithmic spiral.
iZ1 or K1, respectively, for anti-clockwise or clockwise

coiling, and RZaxial strain ratio.

The above formulation produces a spiral stretched along

the Y-axis. The rotation of this curve (Fig. 7B) can be easily

obtained using:

x0rot Z cosðqCuÞððx0Þ2 C ðy0Þ2Þ0:5 (4)

y0rot Z sinðqCuÞððx0Þ2 C ðy0Þ2Þ0:5 (5)

In the new approach we propose, the spiral defined by Eqs.

(2)–(5) can be easily drawn using software (in Rocha, 2003).

The user can then overlay this deformed spiral on a

previously digitized picture of the fossil. By applying an

interactive interface, the user can freely change the variables

R, a, k and i of the spiral until he succeeds in finding the best

fit. When the adjustment is finished, the parameters of the

deformed ammonoid (strain ratio and ellipse orientation)

have been obtained.

The advantage of this methodology could be emphasized

by its application to real examples. In the Jurassic rocks of

central Portugal, an Asthenoceras sp. ammonoid deformed

during diagenetic compaction has been found (Rocha and

Dias, 2003). The use of the refereed software shows a perfect

adjustment to a deformed logarithmic spiral with a coiling

angle of 81.68 and an axial strain ratio of 1.45 (Fig. 8). The

obtained correlation contrasts with the scattering data

obtained using Tan’s method for the same fossil (Fig. 4B);

as previously stated, in such a situation, only the use of

specialized mathematical best-fit techniques allows the

estimation of the deformation parameters.

However, in some cases the fossil could not be matched to

a theoretical deformed logarithmic spiral. This situation

could be induced by either heterogeneous deformation, or an

initial form not ascribed to a perfect logarithmic spiral or

change in growth characteristics of the shell. As expected, the



Fig. 9. (A) Misfit of a theoretical logarithmic spiral in a deformed ammonoid (Kosmoceras grossouvrei; in Poirot, 2004). (B) Data points using Tan’s method in

the ammonoid in (A).
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use of Tan’s methodology in such anomalous forms (Fig. 9A)

gives a scattering of the punctual measures in the standard

graphics (Fig. 9B), the fit of a significative curve to the data is

difficult. However, the proposed computer based technique

allows the user to have a clear idea of the misfit between the

theoretical spiral and the natural form; a mean value could

than be assumed.
3. Conclusions

The fitting of standard deformed spirals to natural strained

ammonoid shells is a fast and reliable method. Indeed,

although a visual match is still needed, the whole shape of the

studied object is used, instead of a set of discrete points. This

enables the user to have a clear idea about the eventual misfit

of the actual shape and an ideal deformed logarithmic spiral,

and thus the degree of confidence that can be placed in the

estimated strain parameters and the assumptions inherent in

this as in all finite strain methodologies.
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